Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,5-Bis[1-(2-hydroxyphenyl)ethylidene]carbonohydrazide dimethylformamide monosolvate

Lingyun Du* and Wenkang Zhang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: dulingyun@lcu.edu.cn

Received 5 September 2010; accepted 19 September 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.165; data-to-parameter ratio = 13.7.

In the title compound, $C_{17}H_{18}N_4O_3\cdot C_3H_7NO$, the main disubstituted urea and solvate molecules are linked by pairs of N-H···O hydrogen bonds. In the main molecules, the benzene rings form a dihedral angle of 15.59 (13)° a;nd two intramolecular O-H···N hydrogen bonds influence the molecular conformation. In the crystal structure, weak intermolecular C-H···O interactions link the hydrogen-bonded pairs into chains along the *b* axis. The chains associate *via* C-H··· π interactions.

Related literature

For a related structure, see: Zukerman-Schpector *et al.* (2009). For the bioactivity of carbonohydrazide derivatives, see: Loncle *et al.* (2004); Li *et al.* (2004).

Experimental

Crystal data

$C_{17}H_{18}N_4O_3 \cdot C_3H_7NO$	a = 16.6372 (15) Å
$M_r = 399.45$	b = 7.5880 (9) Å
Monoclinic, $P2_1/c$	c = 16.2967 (14) Å

$\beta = 94.472 \ (1)^{\circ}$
V = 2051.1 (4) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.958, *T*_{max} = 0.979

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.165$ S = 1.043596 reflections

Table 1

Hydrogen-bond geometry (Å, °). Cg is the centroid of the C12–C17 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O4	0.86	2.02	2.805 (3)	151
N3-H3···O4	0.86	2.09	2.858 (4)	148
$O2 - H2A \cdots N2$	0.82	1.83	2.548 (3)	145
$O3-H3A\cdots N4$	0.82	1.83	2.546 (3)	145
$C6-H6\cdots O1^{i}$	0.93	2.57	3.241 (4)	129
$C10-H10A\cdots Cg^{ii}$	0.96	2.66	3.536 (4)	153

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support by the Science Foundation of China (grant No. 20877037).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2762).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, M. X., Cai, P., Duan, C. Y., Lu, F., Xie, J. & Meng, Q. J. (2004). *Inorg. Chem.* **43**, 5174–5176.
- Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). *Eur. J. Med. Chem.* 39, 1067–1071.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, 02951.

 $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K

 $R_{\rm int} = 0.059$

263 parameters

 $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.17 \text{ e } \text{\AA}^{-3}$

 $0.47 \times 0.46 \times 0.23 \text{ mm}$

10277 measured reflections

3596 independent reflections

1712 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Cryst. (2010). E66, o2645 [doi:10.1107/81600536810037517]

1,5-Bis[1-(2-hydroxyphenyl)ethylidene]carbonohydrazide dimethylformamide monosolvate

L. Du and W. Zhang

Comment

Carbonohydrazide derivatives exhibit various bioactivities such as antibacteriale antifungal, anticonvulsant and anticancer activities (Loncle *et al.*, 2004; Li *et al.*, 2004). Herewith we present the crystal structure of the title compound (I), which is a new carbonohydrazide derivative.

Crystals of (I) comprise equal quantities of a disubstituted urea molecule (M) and a solvent N,*N*-dimethylformamide molecule (Fig. 1). The bond lengths and angles of the title compound are normal and correspond to those observed in N'',N''-bis (1-(2-hydroxyphenyl)ethylidene)carbonohydrazide dimethyl sulfoxide solvate (Zukerman-Schpector *et al.*, 2009). The molecular conformation of M is influenced by two intramolecular O—H···N hydrogen bonds (Table 1). Two benzene rings - C4-C9 and C12-C17, respectively - form a dihedral angle of 15.59 (13)°.

In the crystal structure, one M molecule and solvate molecule are paired *via* N—H···O hydrogen bonds (Table 1). Weak intermolecular C—H···O interactions (Table 1) link hydrogen-bonded pairs into chains along the *b* axis. The chains associate *via* C—H··· π interactions (Table 1).

Experimental

2-Hydroxylacetophenone (10.0 mmol) and carbohydrazide (5.0 mmol) were mixed in 50 ml flash After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from DMF, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for $C_{20}H_{25}N_5O_4$: C 60.14, H 6.31, N 17.53%; found: C 60.23, H 6.45, N 17.64%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H = 0.93–0.96 Å, O—H= 0.82 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2-1.5 U_{eq}$ of the parent atom.

Figures

Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids.

1,5-Bis[1-(2-hydroxyphenyl)ethylidene]carbonohydrazide dimethylformamide monosolvate

Crystal data

C ₁₇ H ₁₈ N ₄ O ₃ ·C ₃ H ₇ NO	F(000) = 848
$M_r = 399.45$	$D_{\rm x} = 1.294 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 16.6372 (15) Å	Cell parameters from 1764 reflections
b = 7.5880 (9) Å	$\theta = 2.5 - 21.7^{\circ}$
c = 16.2967 (14) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 94.472 \ (1)^{\circ}$	<i>T</i> = 298 K
$V = 2051.1 (4) \text{ Å}^3$	Block, colourless
Z = 4	$0.47\times0.46\times0.23~mm$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3596 independent reflections
Radiation source: fine-focus sealed tube	1712 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.059$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 19$
$T_{\min} = 0.958, T_{\max} = 0.979$	$k = -9 \rightarrow 9$
10277 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.165$	$w = 1/[\sigma^2(F_o^2) + (0.0542P)^2 + 0.8303P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
3596 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
263 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0049 (10)

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.15121 (15)	0.6195 (3)	0.48890 (15)	0.0541 (7)
H1	0.1563	0.6254	0.5417	0.065*
N2	0.08378 (15)	0.6805 (3)	0.44431 (15)	0.0491 (7)
N3	0.27455 (15)	0.4912 (4)	0.49563 (15)	0.0555 (8)
Н3	0.2756	0.5015	0.5483	0.067*
N4	0.33674 (15)	0.4171 (3)	0.45841 (15)	0.0510(7)
N5	0.23936 (17)	0.5436 (4)	0.78637 (16)	0.0602 (8)
01	0.20609 (13)	0.5357 (3)	0.37093 (14)	0.0717 (8)
O2	0.02424 (14)	0.7754 (4)	0.30242 (13)	0.0772 (8)
H2A	0.0592	0.7362	0.3357	0.116*
03	0.38946 (14)	0.3282 (4)	0.32185 (14)	0.0826 (8)
НЗА	0.3577	0.3729	0.3518	0.124*
O4	0.22303 (16)	0.6047 (4)	0.65032 (15)	0.0825 (9)
C1	0.20997 (19)	0.5488 (4)	0.4450 (2)	0.0511 (9)
C2	0.0191 (2)	0.7253 (5)	0.57328 (18)	0.0606 (10)
H2B	0.0483	0.6243	0.5950	0.091*
H2C	-0.0361	0.7172	0.5863	0.091*
H2D	0.0428	0.8305	0.5973	0.091*
C3	0.02260 (19)	0.7313 (4)	0.48137 (18)	0.0445 (8)
C4	-0.04633 (18)	0.7964 (4)	0.42688 (19)	0.0455 (8)
C5	-0.04176 (19)	0.8178 (4)	0.3417 (2)	0.0516 (9)
C6	-0.1065 (2)	0.8871 (5)	0.2935 (2)	0.0620 (10)
Н6	-0.1023	0.9033	0.2374	0.074*
C7	-0.1762 (2)	0.9319 (5)	0.3270 (2)	0.0706 (11)
H7	-0.2193	0.9779	0.2940	0.085*
C8	-0.1824 (2)	0.9086 (5)	0.4098 (3)	0.0792 (12)
H8	-0.2299	0.9381	0.4330	0.095*
C9	-0.1183 (2)	0.8417 (5)	0.4584 (2)	0.0634 (10)
Н9	-0.1235	0.8264	0.5143	0.076*
C10	0.40492 (19)	0.3582 (5)	0.59426 (19)	0.0617 (10)
H10A	0.4233	0.4721	0.6132	0.093*
H10B	0.4426	0.2699	0.6148	0.093*
H10C	0.3531	0.3346	0.6139	0.093*
C11	0.39830 (18)	0.3552 (4)	0.50206 (19)	0.0470 (8)
C12	0.46219 (18)	0.2798 (4)	0.4551 (2)	0.0485 (8)
C13	0.4547 (2)	0.2668 (5)	0.3684 (2)	0.0588 (9)
C14	0.5149 (2)	0.1875 (5)	0.3275 (2)	0.0756 (12)
H14	0.5082	0.1747	0.2706	0.091*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.5839 (2)	0.1277 (5)	0.3690 (3)	0.0799 (12)
H15	0.6244	0.0772	0.3404	0.096*
C16	0.5933 (2)	0.1423 (5)	0.4528 (3)	0.0738 (11)
H16	0.6404	0.1021	0.4813	0.089*
C17	0.5336 (2)	0.2159 (4)	0.4947 (2)	0.0610 (10)
H17	0.5410	0.2237	0.5517	0.073*
C18	0.1982 (2)	0.5477 (5)	0.7144 (2)	0.0700 (11)
H18	0.1458	0.5041	0.7116	0.084*
C19	0.3198 (2)	0.6151 (6)	0.7959 (2)	0.0948 (14)
H19A	0.3380	0.6399	0.7427	0.142*
H19B	0.3553	0.5311	0.8239	0.142*
H19C	0.3195	0.7218	0.8275	0.142*
C20	0.2055 (2)	0.4702 (6)	0.8576 (2)	0.0931 (14)
H20A	0.1503	0.4381	0.8436	0.140*
H20B	0.2080	0.5561	0.9010	0.140*
H20C	0.2356	0.3676	0.8757	0.140*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0494 (16)	0.072 (2)	0.0391 (15)	0.0127 (15)	-0.0055 (13)	-0.0015 (14)
N2	0.0449 (16)	0.0560 (18)	0.0448 (16)	0.0048 (14)	-0.0071 (14)	-0.0012 (13)
N3	0.0466 (16)	0.077 (2)	0.0421 (15)	0.0101 (15)	-0.0048 (13)	-0.0037 (15)
N4	0.0432 (15)	0.0593 (18)	0.0493 (17)	0.0022 (14)	-0.0032 (13)	-0.0033 (14)
N5	0.0661 (19)	0.073 (2)	0.0406 (17)	0.0032 (17)	0.0014 (15)	0.0090 (15)
01	0.0632 (15)	0.106 (2)	0.0436 (15)	0.0167 (14)	-0.0101 (12)	-0.0117 (14)
O2	0.0669 (16)	0.117 (2)	0.0473 (14)	0.0275 (15)	0.0014 (13)	0.0008 (14)
O3	0.0693 (17)	0.125 (2)	0.0517 (15)	0.0146 (16)	-0.0044 (13)	-0.0063 (15)
O4	0.099 (2)	0.107 (2)	0.0418 (15)	0.0096 (17)	0.0026 (14)	0.0109 (15)
C1	0.0455 (19)	0.058 (2)	0.048 (2)	-0.0022 (17)	-0.0055 (17)	-0.0060 (18)
C2	0.064 (2)	0.068 (2)	0.049 (2)	0.0049 (19)	-0.0020 (17)	0.0008 (18)
C3	0.049 (2)	0.042 (2)	0.0421 (19)	-0.0037 (16)	-0.0026 (16)	-0.0045 (15)
C4	0.0480 (19)	0.0426 (19)	0.045 (2)	0.0011 (16)	-0.0012 (16)	-0.0055 (16)
C5	0.051 (2)	0.058 (2)	0.044 (2)	0.0062 (17)	-0.0033 (17)	-0.0065 (17)
C6	0.067 (2)	0.068 (3)	0.048 (2)	0.007 (2)	-0.0143 (19)	-0.0001 (18)
C7	0.058 (2)	0.081 (3)	0.070 (3)	0.019 (2)	-0.015 (2)	-0.005 (2)
C8	0.053 (2)	0.103 (3)	0.080 (3)	0.022 (2)	0.004 (2)	-0.006 (3)
C9	0.057 (2)	0.078 (3)	0.055 (2)	0.011 (2)	0.0026 (19)	-0.001 (2)
C10	0.061 (2)	0.070 (2)	0.053 (2)	0.0082 (19)	-0.0060 (17)	0.0022 (19)
C11	0.0440 (19)	0.047 (2)	0.049 (2)	-0.0037 (16)	-0.0047 (16)	-0.0020 (16)
C12	0.045 (2)	0.046 (2)	0.054 (2)	-0.0063 (16)	-0.0020 (17)	0.0011 (17)
C13	0.053 (2)	0.065 (2)	0.057 (2)	-0.0051 (19)	-0.0014 (19)	-0.0055 (19)
C14	0.070 (3)	0.093 (3)	0.066 (3)	-0.004 (2)	0.017 (2)	-0.012 (2)
C15	0.068 (3)	0.074 (3)	0.101 (4)	0.006 (2)	0.028 (3)	-0.004 (3)
C16	0.055 (2)	0.072 (3)	0.094 (3)	0.012 (2)	0.004 (2)	0.011 (2)
C17	0.055 (2)	0.058 (2)	0.070 (2)	0.0031 (19)	-0.001 (2)	0.0056 (19)
C18	0.070 (3)	0.075 (3)	0.064 (3)	0.000 (2)	-0.001 (2)	-0.001 (2)
C19	0.072 (3)	0.132 (4)	0.078 (3)	-0.003 (3)	-0.009 (2)	0.010 (3)

C20	0.116 (3)	0.100 (3)	0.066 (3)	0.013 (3)	0.024 (3)	0.025 (2)
Geometric pa	rameters (Å, °)					
N1-C1		1 365 (4)	С7—	-C8		1 372 (5)
N1—N2		1.369 (3)	C7—	-H7		0.9300
N1—H1		0.8600	C8—	-C9		1.375 (5)
N2—C3		1.283 (4)	C8-	-H8		0.9302
N3—N4		1.361 (3)	C9–	-H9		0.9300
N3—C1		1.374 (4)	C10-	C11		1.498 (4)
N3—H3		0.8600	C10-	—H10A		0.9600
N4—C11		1.289 (4)	C10-	—H10B		0.9600
N5-C18		1.311 (4)	C10-	—H10C		0.9600
N5-C19		1.440 (4)	C11-	—C12		1.473 (4)
N5-C20		1.441 (4)	C12-	—C17		1.394 (4)
01—C1		1.208 (3)	C12-	—C13		1.411 (4)
O2—C5		1.352 (3)	C13-	—C14		1.384 (5)
O2—H2A		0.8200	C14-	—C15		1.364 (5)
O3—C13		1.358 (4)	C14-	—H14		0.9300
O3—H3A		0.8200	C15-	C16		1.367 (5)
O4—C18		1.232 (4)	C15-	—Н15		0.9299
С2—С3		1.504 (4)	C16-	—C17		1.368 (5)
C2—H2B		0.9600	C16-	—H16		0.9300
C2—H2C		0.9600	C17-	—H17		0.9300
C2—H2D		0.9600	C18-	-H18		0.9300
С3—С4		1.480 (4)	C19-	—H19A		0.9600
С4—С9		1.382 (4)	C19-	—H19B		0.9600
C4—C5		1.405 (4)	C19-	—H19C		0.9600
C5—C6		1.387 (4)	C20-	—H20A		0.9600
C6—C7		1.363 (5)	C20-	—H20B		0.9600
С6—Н6		0.9300	C20-	—Н20С		0.9600
C1—N1—N2		116.4 (3)	C11-			109.5
C1—N1—H1		121.8	C11-			109.5
N2—N1—H1		121.8	H10.	А—С10—Н10В		109.5
C3—N2—N1		120.0 (3)	C11-			109.5
N4—N3—C1		116.7 (3)	H10.	A—C10—H10C		109.5
N4—N3—H3		121.6	H10	В—С10—Н10С		109.5
C1—N3—H3		121.6	N4—	-C11-C12		115.4 (3)
C11—N4—N3		120.2 (3)	N4—	C11C10		122.7 (3)
C18—N5—C1	9	120.2 (3)	C12-			121.8 (3)
C18—N5—C2	0	121.3 (3)	C17-			116.4 (3)
C19—N5—C2	0	118.5 (3)	C17-			121.2 (3)
С5—О2—Н2А	A	109.5	C13-			122.4 (3)
С13—О3—Н3	A	109.5	O3–	-C13C14		117.2 (3)
01—C1—N1		124.8 (3)	O3—	-C13-C12		122.7 (3)
01—C1—N3		123.5 (3)	C14-			120.1 (3)
N1—C1—N3		111.6 (3)	C15-			121.2 (4)
C3—C2—H2E	3	109.5	C15-			119.4
С3—С2—Н2С	2	109.5	C13-			119.4

H2B—C2—H2C	109.5	C14—C15—C16	119.7 (4)
C3—C2—H2D	109.5	C14-C15-CG1	59.7 (2)
H2B—C2—H2D	109.5	C14—C15—H15	120.2
H2C—C2—H2D	109.5	С16—С15—Н15	120.2
N2—C3—C4	115.1 (3)	C15-C16-C17	120.0 (4)
N2—C3—C2	123.6 (3)	С15—С16—Н16	120.0
C4—C3—C2	121.3 (3)	C17—C16—H16	120.0
C9—C4—C5	116.9 (3)	C16—C17—C12	122.5 (4)
C9—C4—C3	120.9 (3)	С16—С17—Н17	118.8
C5—C4—C3	122.2 (3)	С12—С17—Н17	118.8
O2—C5—C6	116.4 (3)	O4—C18—N5	125.4 (4)
O2—C5—C4	123.3 (3)	O4—C18—H18	117.3
C6—C5—C4	120.3 (3)	N5-C18-H18	117.3
C7—C6—C5	121.0 (3)	N5-C19-H19A	109.5
С7—С6—Н6	119.5	N5—C19—H19B	109.5
С5—С6—Н6	119.5	H19A—C19—H19B	109.5
C6—C7—C8	119.6 (3)	N5-C19-H19C	109.5
С6—С7—Н7	120.2	H19A—C19—H19C	109.5
С8—С7—Н7	120.2	H19B—C19—H19C	109.5
С7—С8—С9	120.0 (4)	N5—C20—H20A	109.5
С7—С8—Н8	120.0	N5-C20-H20B	109.5
С9—С8—Н8	120.0	H20A—C20—H20B	109.5
C8—C9—C4	122.2 (3)	N5-C20-H20C	109.5
С8—С9—Н9	118.9	H20A—C20—H20C	109.5
С4—С9—Н9	118.9	H20B—C20—H20C	109.5

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O4	0.86	2.02	2.805 (3)	151
N3—H3…O4	0.86	2.09	2.858 (4)	148
O2—H2A…N2	0.82	1.83	2.548 (3)	145
O3—H3A…N4	0.82	1.83	2.546 (3)	145
C6—H6…O1 ⁱ	0.93	2.57	3.241 (4)	129
C10—H10A…Cg ⁱⁱ	0.96	2.66	3.536 (4)	153
(1)				

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x+1, -y+1, -z+1.

